			Ramakrishna Mission Vivekana	anda (enter	hary C	ollege		_							
			Department of Math	emat	ics (UC	G)										
	1		Consolidated CO-PO-	PSO N	/lappii	ng										
					Pro	gram	Oute	omes		Average	Prog	ram Sp	ecific (Dutcom	es	Average
Cours Code	e Course Name	CO no	CO in details	PO1	PO2	PO3	PO4	PO5	PO6	mapping strength	PSO	PSO2	PSO3	PSO4	PSO5	mapping strength
			Semo	ester	-I			an si Manakata	a ka maana		1000	NULL OF THE OWNER OF THE	in the second			
_	try tion,	CO1	Recall the basic concepts of conics and classification of quadrics.	3	3	3					3					
HCC0	come Equat	CO2	Construct a variety of differential equations analytically and numerically.			3		3				3				
JGMAT	lculus, C erential Pract	CO3	Measure/calculate length, perimeter, area, volume of surface of revolution of a curve and techniques of sketching conics.			3	3	3		3			3			3
	Ca	CO4	Develop ability to graphically analyze functions by computer practical.				3		3						3	
THCC02	ebra	CO1	Understand complex numbers, way of representing numbers, relationships among numbers, different method for solving polynomial equations.			3		3				3				
[A]	Ngo	CO2	Solve linear equations.			3		3		3		3				3
UGN	4	CO3	Demonstrate their ability to graphically or numerically analyze functions by presentation.				3		3						3	
			Seme	ster-I	I					L						
		CO 1	Describe the real line as a complete, ordered field.	2	2	2					2					
CC03	lysis	CO 2	Use the definitions of convergence as they apply to sequences, and series.			3		3				3				
MATH	eal Ana	CO 3	Determine the basic topological properties of subsets of the real numbers.			2	2	2		2.5			2			2.5
ng	Я	CO 4	Plot the convergence of sequences and series of different test on computer.				3		3					3		

Principal Ramakrishna Mission Vivekananda Centenary Collegé Rahara, Kolkata-700 118

Course	Course				Pro	gram	Outc	omes		Average	Prog	ram Sp	ecific (Outcom	es	Average
Code	Name	CO no	CO in details	POI	PO2	PO3	POA	POS	DOC	mapping	PSO	DECO				mapping
	tor	CO 1	Find general solution of homogenous and non-homogenous equation of higher order and their super position.	2	2	2	F04	POS	100	strength	2	PSO2	PSO3	PSO4	PSO5	strength
C04	is & Vec	CO 2	Find power series solutions of differential equations, and develop the ability to apply differential equations to significant applied and/or theoretical problems.			3		3				3				× .
ATHC	luatior Iculus	CO 3	Describe Euler's equation, method of undetermined coefficients and method of variation of parameters.			2	2	2					2			
NGM/	ential Ec Ca	CO 4	Analyse vector functions (graphically or analytically) to find derivatives, tangent lines, integrals, arc length, and curvature.				3		3	2.6				3		2.6
	Differ	CO 5	Demonstrate their understanding of how physical phenomena are modelled by differential equations and dynamical systems. Implement solution methods using appropriate technology.				3		3						3	
			Semesi	ter -I	U I			13 - 4 ⁰			1000		1. 10 M M			
	ons & tric	CO 1	Understand the sequential approaches of limit, continuity, uniform continuity and some important properties	2	2	2				Sum - mak	2				T	Alternation
HCC05	Functi to Me es	CO 2	Recognize the difference between pointwise and uniform convergence of a sequence of functions	2	2	2	_		'n	ŀ	2					
JGMATI	of Real oduction Spac	CO 4	Recall the defining properties of a metric space, and determine whether a given function defines a metric and get familiarize with open sets, closed sets and Cantor set.	3	3	3				2.5	3					2.5
	Theory Intr	CO 3	Apply the Mean Value Theorem and the Fundamental Theorem of Calculus to problems in the context of real analysis.			3	3	3		-			3			

Principal Ramakrishna Mission Vivekanarida Centenary College Rahara, Kolkata-700 118

Course	Course				Pro	gram	Outo	omes		Average	Prog	ram Sr	ecific (Dutcom	165	Average
Code	Name	CO no	CO in details	DOI	DOG					mapping	PSO					mapping
9	_	СОІ	Understand the External direct product of a finite groups, finite abelian groups and Cauchy's theorem.	2	2	2 2	PO4	PO5	PO6	strength	2	PSO2	PSO3	PSO4	PSO5	strength
THCCO	Theory]	CO2	Understand and classify the permutation of a group, centre of a group, Lagrange's theorem and Fermat's Little theorem.				3		3					3		
UGMA	Group	CO3	Apply different properties of group homomorphisms and isomorphisms theorems and Cayley's theorem in solving problems.				3		3	2.75				3		2.75
		CO4	Develop the ability to graphically or mathematically analyse the different theorem on Group by presentation.				3		3						3	
	s	CO 1	Implement a variety of numerical algorithms using appropriate technology.	3	3	3					3					
HCC07	Method	CO 2	Compare the viability of different approaches to the numerical solution of problems arising in roots of solution of non-linear equations, interpolation and approximation.			2	2	2		ľ			2		_	
TAME	lerical	CO 3	Analyse the error incumbent in any such numerical approximation.				3		3	2.8				3		2.8
ň	Nun		Understand graphically or numerically analyse the different nethods of Numerical method by computer practical.				3		3	F				3	-	
	C	$\frac{1}{s}$	sumerical differentiate and integrate, solution of linear ystems using different method.				3		3	F					3	

Principal Ramakrishna Mission Vivekananda Centeriory College Rohara, Kalkata-700 118

Course	Course				Pr	ogram	o Out	comes		Average	Prog	ram Sr	ecific	Outcon	165	Average
Code	Name	CO no	CO in details	POI	PO2	PO3	PO4	PO5	PO6	mapping strength	PSO	PSO2	PSO3	PSO4	PSO5	mapping strength
			Seme	ster -	IV											
8	on and ons	CO 1	Develop a knowledge about Riemann Integration, Fourier series and Power series, hence their properties and applications.	2	2	2					2					
THCC	egratic Functic	CO 2	Recognize the difference between pointwise and uniform convergence of a sequence of functions.	2	2	2					2					
UGMAT	1ann Int eries of]	CO 3	Illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.	2	2	2				2.22	2					2.22
	Rien S	CO 4	Demonstrate graphically or analytically analyse integrability conditions, the sequence of functions, series of functions and their natures by presentation.			3		3		F		3				
	S	CO1	Evaluate double and triple integrals over rectangular and non- rectangular region and volume by triple integrals in cylindrical and spherical coordinates.			2	2	2					2			
HCC09	e Calculu	CO2	Demonstrate their ability to graphically or numerically analyze Partial differentiation, condition for differentiability relation between divergence theorem by presentation.			3	3	3		F			3			
UGMAT	ultivariat	CO3	Analyze the fundamental theorem of calculus and see their relation in calculus, leading to the more generalized version of Stokes' theorem in the setting of differential forms.				3		3	2.8				3		2.8
	Ŵ		Analyze functions of several variables to find limit, continuity and differentiability.				3		3					3		
	0	$CO5 \begin{bmatrix} 1\\ a \end{bmatrix}$	nd find potential functions.				3		3						3	

ka Principal Ramakrishna Mission Vivekananda Centenary College Rahara, Koikata-700 118

Course	0				Pro	gram	Outc	omes		Average	Prog	ram Sp	ecific (Outcom	es	Average
Code	Name	CO n	CO in details	POI	PO2	PO3	PO4	POS	POG	mapping strength	PSO	BSO2	DSO2	DSO4	DEOS	mapping
	ebra I	CO 1	Assess properties implied by the definitions of rings, factor rings, prime and maximal ideals.	101	102	3	104	3	100	ou ongen	1	3	1303	F 504	1303	bii engin
C10	ar Alg	CO 2	Use the concepts of isomorphism and homomorphism for rings.			3		3				3				
AATHCO	and lines	CO 3	Use the definition and properties of linear transformations and matrices of linear transformations and change of basis, including kernel, range and isomorphism.			3		3		3		3				3
ngn	heory	CO 4	Analyse and demonstrate examples of ideals and quotient rings.				3		3					3		
	Ring TI	CO 5	Demonstrate graphically or analytically analyze prime and maximal ideals, homomorphism and isomorphism theorem on rings and vector spaces by presentation.				3		3	ľ					3	
		a ta const	Semes	ter - \	7		С 1953 1 р. 19					-				
-	ial	CO 1	Be familiar with the modelling assumptions and derivations that lead to PDEs.			3		3				3				
(HCC1	ifferent ons and ations	CO 2	Recognize the major classification of PDEs and the qualitative differences between the classes of equations.				3		3	F				3		
UGMA1	^a rtial Di Equatic Applic	CO 3	Demonstrate graphically or analytically analyze the solution of Cauchy problem, characteristic for PDE and solution of Heat equation by python languages.				3		3	3				3		3
	-	CO 4	Be competent in solving linear PDEs using classical solution nethods.				3		3						3	

Principal Ramakrishna Mission Vivekananda Centenäry College Rahara, Koikata-700 118

Course	Com				Pro	gram	Outc	omes		Average	Prog	ram Sp	ecific (Jutcom	es	Average
Code	Nam	e CO	CO in details	DOI	DOD	DO2	DO	DOG	D.O. (mapping	PSO					mapping
		CO 1	Explain the concept of group homomorphism, isomorphism and automorphism.	POT	PO2	3	<u>3</u>	3	PO6	strength	- 1	PSO2	PSO3 3	PSO4	PSO5	strength
THCC12	[heory II	CO 2	Infer the properties of external and internal direct product and fundamental theorem of finite abelian groups, conjugates, the Class Equation, p-groups, Cayley's theorem and Sylow's theorems.				3		3					3		
GMA	L dnor	CO 3	Derive and apply Sylow Theorems, Cauchy's theorem and simplicity of An for $n \ge 5$.				3		3	3				3		3
	6	CO 4	Design graphically or analytically analyse the application of factor groups to automorphism groups, Sylow's theorem and consequences, simplicity of alternating groups and conjugacy in Sn by presentation.				3		3						3	
		CO 1	Formulate optimization problems and solve them using different methods.				3	2	3						3	
AATHDSEI	Programming	CO 2	Place a Primal linear programming problem into standard form and use the Simplex Method or Revised Simplex Method to solve it and find the dual, and identify and interpret the solution of the Dual Problem from the final tableau of the Primal problem.				3		3	3					3	3
ngn	Linear	CO 3	Explains the Transportation Problem and Assignment Problem, formulate them as an LPP and hence solve the problem.				3		3						3	
		CO 4	To understand the theory of games for solving simple games.				3		3	Ī					3	
62	рі	CO 1	Compute probabilities and conditional probabilities in appropriate ways.				3		3					3		
IHDS	ility ar istics	CO 2	Represent and statistically analyse data both graphically and numerically.				3		3	ľ				3		
UGMAT	Probab) Stati	CO 3	Demonstrate the ability of conditional probabilities statistically analyse data both graphically and numerically by presentation.				3		3	3					3	3
		CO 4	Solve word problems using combinatorial analysis.				3		3	ľ					3	
													ξ	n. K		la

Principat Ramakrishna Mission Vivekananda Centenary College Rahara, Kolkata-700 118

Course	Cour	se CO				P	rogran	n Out	come	S	Average	Pro	gram S	pecific (Dutcom	es	Average
Code	Nam	e CO	no	CO in details	PO		2 PO?			5 POG	mapping	PSC		DE O1	DECL	2005	mapping
a de la composition				Seme	ster	-VI	-11 0.	110	110.	/100	ottengtn	1_1	JP302	11503	PSO4	PSOS	strength
	x Analysis	CO	l l t	Conceive the concepts of analytic functions and will be familiar with the elementary complex functions and their properties, and apply the concept and consequences of analyticity and the Cauchy Riemann equations and of results on harmonic and entire functions including the fundamental heorem of algebra.	3	3	3					3			danar (dad) 		
MATHCC13	and Comple	CO 2	e n ii	Applies the theory into application of the power series expansion of analytic functions, and understand the basic nethods of complex integration and its application in contour integration.			3		3		2.8		3				2.8
nGi	etric Spaces	CO 3	D th H th	Demonstrate the knowledge of Cauchy sequences, Cantor's neorem, Heine-Borel property, contracting mapping, comeomorphism and Banach fixed point theorem, through neir application to ordinary differential equation.			3		3				3				2.0
	We	CO 4	R cl cc Ar	epresent functions as Taylor, power and Laurent series, assify singularities and poles, find residues and evaluate omplex integrals using the residue theorem.			2	2	2					2			
	gebra	CO 1	De un	emonstrate knowledge of polynomial ring, integral domain, ique factorization domain and Euclidean domain.	2	2	2	3		3		2			3		
HCC14	Linear Al	CO 2	Int of ope	erpret the knowledge of dual space and basis, eigen space linear operator and the minimal polynomial for a linear erator.	3	3	3				-	3					
UGMAT	heory and II	CO 3	De ^v app theo	velop the knowledge of inner product space, least squares roximation, normal and self-adjoint operator, spectral orem.			2		2		2.22		2				2.22
	I. guixi	CO 4	App Cay proj	bly unique factorization domain and its applications, ley Hamilton theorem and its consequences, orthogonal ections and spectral theorem.			2		2		-		2				
									I				L	Rama	Principo	Mission	te

Vivekanarida Centenary College Rahara, Kolkata-700 118

Course	Course				Pro	gram	Outo	omes		Average	Prog	ram Sj	pecific (Outcom	es	Average
Code	Name	CO no	CO in details	PO1	PO2	PO3	PO4	POS	PO6	mapping strength	PSO	PSO2	PSO3	PSO4	PSOS	mapping strength
3 or E4		CO 1	Understand the virtual work, stable and unstable equilibrium.	3	3	3		1.00	100		3		1505	1504	1305	B
ATHDSE AATHDS	lechanics	CO 2	Understand degree of freedom, D'Alembert's Principle, compound pendulum and conservation of momentum and energy.	2	2	2				2.5	2					2.5
NGM	X	CO 3	Solve the problems on stability of nearly orbit, motion in a particle in 3D and motion on a smooth sphere, cone and any surface.				2		2					2		
SE3 SE4	S	CO 1	Demonstrate knowledge of SI, SIR, SIRS and SIC.	2	2	2					2					
THD: or THD:	3io emati	CO 2	Illustrate knowledge about different types of models and applications.			3	3	3					3			
UGMA UGMA	Math	CO 3	Demonstrate the knowledge of Growth model, decay model, lake pollution model limited growth of population and battle model by practical.			3	3	3		2.66			3			2.66
4 or	gy	CO 1	Define and illustrate the concept of countable set and uncountable set, cardinal numbers and cardinal arithmetic, Zorns lemma and ordinal numbers.	3	3	3					3					
ATHDSE3 AATHDSE3	Set Topolo	CO 2	Demonstrate the concept of topological spaces and continuous functions, product topology and quotient topology, metric topology and Baire category theorem.	2	2	2				2.75	2					2 75
NGN UGN	Point	CO 3	Define connectedness, compactness, and totally bounded spaces prove a selection of related theorems.	3	3	3				F	3					2.75
		CO 4	Students will demonstrate the ability of topological spaces and analyze some important theorem by presentation.			3		3		ŀ		3				
				6	iroma	a A	12300	ye F	<u>°0</u>	2.74	ଔୟ	and	Avera	rincipo		2•74 da
												(Inco	Rama	crishna a Cente	mission anary C	ollege
												VIVE	Rahara	Kolkat	a-700 1	18

Ramakrishna Mission Vivekananda Centenary College Department of Mathematics (PG)

			Consolidated CO-PO-PSC) Mappi	ng										
Course Code	Cours Name	e Co Nam	e CQ in details	F	rogra	n Oute	comes	Average		Prog	ram Sp	ecific O	utcomes		Avera mappi
				РО	I PO	2 PO	3 PO4	4 mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	ctroom
			SEM	ESTER	I										
10		CO1	Define algebraic structures	-											
<u> </u>	-e	CO2	Construct substructures	2					2						—
H H	gebi	CO3	Analyse a given structure in detail		2	2				2					1
Ň	Alg	CO4	Compare structures viz Groups rings fields	3	3			2.6			3				
ĕ		CO5	Develop new structures based on given structures		3	3					-	3			- ²
		COL	Demonstrate an understanding of limits and how that are				3					-		2	
			sequences, series and differentiation.	3					3						
C102	lysis	CO2	Appreciate how abstract ideas and region methods in mathematical analysis can be applied to important practical problems		3	3	\vdash	1			\rightarrow	-+			
MATH	eal Ana	CO3	Describe fundamental properties of the real numbers that lead to the format development of real analysis		1	_	-	3			\rightarrow	_			
g	ä	CO4	Comprehend regions arguments developing the theory underpinning real analysis	<u> </u>	3	2		-	-+	\rightarrow	3	\rightarrow			3
		CO5	Construct rigorous mathematical proofs of basic results in real analysis	-	Ľ	3		4		\rightarrow	$ \rightarrow $	3			
		СО1	Represent functions as Taylor, power and Laurent series, classify singularities and poles, find residues and evaluate complex integrals using the residue theorem	3		3	3		3	-	+	+	3	_	
103	alysis	CO2	Apply the theory into application of the power series expansion of analytic functions, and understand the basic methods of complex integration and its application in contour integration		2	2			\neg	2	+	+	\dashv		
MATHC	plex An	CO3	Analyse the concept of metric space and some important theorem on complex analysis for solving different problems	3	3			2.8	+	+	3	+		-	
Bg	Com	CO4	Evaluate complex contour integrals directly and by the fundamental heorem, apply the Cauchy integral theorem in its various versions, and the Cauchy integral Formula		3	3			+	+	-	3		\neg	2.8
	C	05	Compute Laurent series and its examples, absolute and uniform onvergence of power series		┥		3		+	+	+	+	+	_	

Principal Principal Ramakrishna Misston Vivekananda Centenary College Rabara, Kaketa 700 113

Course	Course	Co	CO in detaile	Pr	ogram	Outco	mes	Average		Prog	ram Sp	ecific O	utcomes		Average mapping
	Name	Name		PO1	PO2	РОЗ	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PS05	PSOG	
	al	COI	Identify real phenomena as models of partial derivative equations.	2				1	2			1004	1505	1500	<u> </u>
C104	Part	CO2	Classify differential equations and solve them.	3	3			1			3				{
МАТНС	ary and intial Ec	CO3	Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation.		3	3		2.6			-	3			26
PG	Ordin Differe	CO4	Extract information from partial derivative models in order to interpret reality.		2	2						2			2.0
		CO5	Solve the basic application problems described by differential equations.			3	3								
		CO1	Understanding the theoretical and practical aspects of the use of numerical analysis.	2					2				3		
C105	nalysis	CO2	Understanding of common numerical analysis and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.	3					3						
MATHC	erical A	CO3	Proficiency in implementing numerical methods for a variety of multidisciplinary applications.	3	3	_	_	2.8	_		3		-+		28
PG	Mum	CO4	Establishing the limitations, advantages, and disadvantages of numerical analysis.		3	3		ł			-				2.0
		CO5	Deriving numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations and the solution of differential equations			3	3					3	3	-	
	umerical Matlab	CO1	Reading, understanding and tracing the execution of programs written in C++ language.	3	\uparrow				3	\dashv	+	\rightarrow			
	and N cilab /	CO2	Solving a linear system of equations using an appropriate numerical method.		2	2		ŀ	\rightarrow		\rightarrow				
CC106	in C++ ave / S	CO3	Performing an error analysis for a given numerical method.		+	-		ŀ	\rightarrow		\rightarrow	\rightarrow			
SMATH	mming nu- Octi	CO4	Developing programs GNU-OCTAVE /SCILAB/ MATLAB that perform operations using derived data types.		+	3	3	2.8	\rightarrow	\rightarrow	+		3		2.8
ă	er Progra	205	Solving an algebraic or transcendental equation using an appropriate numerical method.		+	+	3	ŀ	\dashv	+	+	\dashv	3	_	÷
	Practica	:06 E	Developing the C++ code for a given algorithm.		╉	╉	3	ŀ	+	+	+	+	\rightarrow	, ,	

Principal Ramakrishna Mission Vivekonanda Centenary College Rohara, Kcikcta-700 118

	1																
Course Code	Cour Nam	rse ie N	Co	CO in details		Progr	am O	utcor	nes	Average		Prog	gram Sp	ecific O	utcomes		Average mapping
	J	ľ	- inc		РС	01 PC	D2 F	203	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	strongth
				SEM	ESTEF	п				en							
_		со	01	Understand the Matrix theory, determinants and their application to systems of linear Equations	2	Τ	T	Т			2						
ATHCC20	gebra II	CO:	2	Apply the knowledge of Eigenvalues, diagonalization of matrices and reduction of systems of linear equations into simpler systems of easily tractable nature.	\uparrow	2		2				2		_		_	
PGM/	βIA	cos	3	Apply the concept of Vector theory: subspace, basis, linear independence, inner product spaces etc. in real-world problems		3		,		2.5				3			2.5
$ \rightarrow $		CO4	•	Comprehend the applications of matrix algebra.		T	3	Ť	3				\neg		3		
~	ation	соі	C	Conceptualisation of simple functions.	3		T	\dagger			3	\rightarrow	+	\dashv	_	-+	
THCC20	d Integra	CO2	A n	Apply the concepts of integration for the study in subsequent chapters amely, signed and product measure.		2	2	╈			\rightarrow	2	+	\rightarrow	_	-	
PGMA'	asure an	CO3	G	ieneralize the classical Lebesgue integral on real sets.		3	3	t		2.7		-	+	3	\dashv		2.7
	Me	CO4	In on	tegration of functions on arbitrary measure space and bounded functions a sets of finite measure.				1	3	ł	\rightarrow	+	+	+	\rightarrow		
		C01	De car nu	efine and illustrate the concept of countable set and uncountable set, rdinal numbers and cardinal arithmetic, Zorns lemma and ordinal mbers.	3			T			3	+	+	+	+		
	il Topology	CO2	De: fun Bai	fine and illustrate the concept of topological spaces and continuous ctions, product topology and quotient topology, metric topology and re category theorem.	3			\uparrow		ŀ	3	+	+	+	+	-	
	Genera	203	Def a sei	Ine connectedness, compactness, and totally bounded spaces and prove lection of related theorems.		3	3	┢		3	+	3	+	+	_		3
	d c	204	Ana	alyse topological spaces and some important theorem.	3	3		\vdash	1		+		3	+	+	-	P

Principal Ramakrishna Mission Vivekanarida Centenary College Rohara, Kolkata-700 118

6

Course Code	Course	Co	CO in details	Pr	ogram	Outco	mes	Average		Prog	ram Sp	ecific O	utcomes		Average mapping
	raine	Name		PO1	PO2	роз	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
	tivity	COI	Explain Lagrangian and Hamiltonian formulation of Classical Mechanics.	2					2						
14	ry of Rela	CO2	State the conservation principles involving momentum, angular momentum and energy and understand that they follow from the fundamental equations of motion.	3				1	3						
THCC2	& Theol	СОЗ	Understand Newton's laws and motion of particle under central force field.	2					2			_			
PGMA	cchanics	CO4	Describe the basic concepts of the theory of relativity.	2				2.15	2				_		2.15
	ssical M	CO5	Differentiate facts from wrong general public ideas about the theory of relativity.	3	3						3				
	Cla	CO6	Discuss postulates of the special theory of relativity and their consequences.	3	3						3				
	IS	CO1	Characterize a set of vectors and linear systems using the concept of linear independence.	3					3			+			
	iate Calculı	CO2	Visualize and manipulate multivariable and vector valued functions presented in graphical, numeric, and symbolic form.	3	3						3				
	& Multivari	CO3	Identify and construct linear transformations of a matrix and characterize them as onto, one-to-one.		T	3	3	3				+	3	_	2
	ncar Algebra	04 o	Solve linear systems represented as linear transforms and express them in other forms, such as matrix equations and vector equations.				3				+			3	3
		D5 Dar	offerentiate multivariate functions in all directions and learn several oplications of multivariate derivatives.			\uparrow	3	ŀ			+	+	+	3	

Principal Ramakrishna Mission Vivekananda Centenory College Rahara, Kolkata-700 118

Course	Course	Co		Pr	ogram	Outco	mes	Average		Prog	gram Sp	ecific O	utcomes		·Average mapping
Code	Name	Name		PO1	PO2	РОЗ	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
\$	ntegra	COI	Understand the Calculus of Variations, Euler-Lagrange's equations.	2					2						
ICC20	'ms & l ions	CO2	Obtain solution of a boundary value problem using integral equations.		3	3						3			
MATH	ansfoi Equati	CO3	Obtain minimum surface of revolution from a variational formulation.		3	3		2.8				3			2.8
PGI	gral Tr J	CO4	Obtain the solution of Wave, Heat and Laplace equations using integral transform technique.			3	3						3		
	Inte	CO5	Construct Green's function and master the concept of various Integral Equations: Fredholm and Voltera type.				3							3	
			SEMES	TER II						2					
HCC301	sis	CO1	Work with a complete orthogonal set in a Hilbert space, weak and weak * topologies on normed linear spaces.		2	2				2					
	Analy	CO2	Compare the differences between basis and Schauder basis.	3	3		_	2.8			3				
GMATH	nctional	CO3	Investigate the best approximation of a given vector by vectors in given subspace.	3	3			2.8			3				2.8
~	Fu	CO4	Work with Fredholm and other integral operator as a linear operator.		3	3		F				3			
		CO5	Compute the dual spaces of certain Banach spaces.				3	F			-+	-+		1	
	2.	CO1	Describe the main features of dynamical systems and realise as systems of ordinary differential equations	3					3		\neg		-+		
C302	n Analys	CO2	Understand the origin of dissipation and its effect on the orbits of dynamical systems, abstract dynamical system, discrete dynamical system and chaotic dynamical system	2					2						
Ĕ	Syster	CO3	Use a range of specialised analytical techniques which are required in the study of dynamical systems		2	2		2.6		2					26
PGMAT	'namical	CO4 0	Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability and bifurcations	3	3			2.6			3				2.0
	คิ	CO5 s F	Explain and prove special properties of finite-dimensional Hamiltonian ystems, in particular conservation laws, Liouville's Theorem and Poincare's Recurrence Theorem		3	3					+	3	\rightarrow		

Pithcipal Ramakrishna Mission Vivekananda Centenary Collega Rahara, Kolkata-700 118

Course Code	Course Name	Co Nam	cO in details	CO in details			Averag		Prog	gram Sp	Average mapping				
				РОТ	PO2	РОЗ	ро	4 mappin strengt	g PSO1	PSO2	PSO3	PSOA	BEOF	DECO	Eleonath
		CO1	Understand the concept of extended real numbers, Lebesgue and Bore measures on real line.	1 3			Γ		3	1502	1303	1304	1505	PS06	
=	Ilysis	CO2	Understand the measurability of real sets.	2				1	2						
THCE3	Real Ans	CO3	Understand the measurability of extended real valued functions.	2				1	2			_			
PGMA	vanced]	CO4	Solve problems relating to determinations of measures of finite, infinite sets.		3	3		2.65				3		_	2.65
	Ρq	CO5	Construct different Borel sets.		\square		3	1			\neg	-	\neg	3	
		CO6	Construct measurable, non-measurable sets and functions.				3	1			+	\neg	\rightarrow	-	
302	Analysis	CO1	Understand Infinite products of complex numbers.	2					2		+	\dashv	\rightarrow	_	
MATHCE	l Complex –I	CO2	Understand the concept of Spherical metrics, Normal Convergence, Picard's Theorem.	3				2.66	3		+	+			2 66
PG	Advanceo	CO3	Use the Mittag-Leffler Theorem, Gamma functions, Weierstrass' Factorization.		3	3					+	3	+	-	2.00
303	logy-I	CO1	Understanding the fundamental concepts and methods in algebraic topology.	3		+			3	+	+	+	-+		
MATHCE	raic Topol	CO2	Explain particular homotopy and homology theory.	2	+	\uparrow		2.66	2	+	+	+	+	-	2.66
PGA	Algebi	CO3	formulate and solve problems of a geometrical and topological nature in nathematics.		3	3			\neg	+	+	3	+		

Principal Ramakrishna Mission Vivekananda Centenory College Rahara, Kolkata-700 118

Course	Course	Co		Pro	ogram	Outco	omes	Average		Prog	ram Sp	ecific Ou	itcomes		Average mapping strength		
Code	Name	Name	CO in details	PO1	PO2	PO3	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
		COI	Realize the behaviours of different surfaces, normal curvatures, principle curvatures, Gaussian and mean curvatures.	3					3								
E304	nifold-I	CO2	Understand the first and second fundamental forms.	2					2								
МАТНС	ntial Ma	CO3	Evaluate 1st and 2nd fundamental forms of surface patches.	3				2.8	3						2.8		
PG	Differe	CO4	Analyse and characterize different curves and surfaces.	3	3						3						
		CO5	Construct differential maps between smooth surfaces.		3	3						3					
E30	7	CO1	Understanding of our galaxy.	2					2								
ATHC 5	mology	CO2	Contrast and compare our galaxy with other galaxies as to type, contents, age, luminosity, motion, and size.	3	3			2.66	3 2 3				2.66				
PGM	Cos	CO3	Using cosmological models to analyze the size, age, structure, and motion of the universe overall.	3	3						3						
E306	ical 1	COI	Use sophisticated mathematical techniques in the analysis of mathematical models in biology.		2	2				2							
THC	emaf logy-	CO2	Apply and extend classical models in mathematical biology.		3	3		2.66				3			2.66		
PGMA	Math bio	CO3	Construct mathematical models for biological systems like phytoplankton- zooplankton system, Microbial population model, Discrete and Continuous population models.				3	2.66	2.66						3		
		CO1	Show the Kuhn-Tucker optimality conditions.	2					2								
5	I-43	CO2	Formulate and solve problems as networks and graphs.	-		3	3	3 3 2.8 3					3				
THCE30	1 Researd	CO3	Construct linear integer programming models and discuss the solution techniques.				3		2.8	2.8						3	2.8
PGMAT	Operation	CO4	Develop linear programming (LP) models for shortest path, maximum flow, minimal spanning tree, critical path, minimum cost flow, and transhipment problems.				3							3			
	Ĵ	CO5 5	Solve the problems using special solution algorithms.				3							3	m. Ken		

Principal Ramakrishna Mission Vivekanarıda Centenary College Rahara, Koikata-700 118

Course	Course	6		Pro	ogram	Outco	omes	Average		Prog	ram Sp	ecific Oı	itcomes		Average mapping			
Code	Name	Name	CO in details	PO1	PO2	роз	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
	cs-I	СОІ	Describe motion, deformation and forces in a continuum.	2					2									
HCE308	Mechani	CO2	Understand constitutive models for elastic and viscoelastic solids.	3					3									
PGMAT	atinuum	CO3	Derive equations of motion and conservation laws for a continuum.		2	2		2.5		2					2.5			
	Col	CO4	Solve simple boundary value problems for solids.		3	3						3						
	on &	CO1	Understand the fundamentals of Python Language and the basics of LaTeX.	3					3									
PGMATHAE301	g in Pyth Tex	CO2	Acquire the basic skills required for Python programming.	2					2									
	ramming La'	CO3	Solve Mathematical problems using Python programs.		2	2		2.5		2					2.5			
	Prog	CO4	Learn to prepare a LaTeX document, article and a project report.		3	3						3						
		한 복당. 1993년	SEMES	TER IV														
		CO1	Use congruence as a tool to reduce a hard labour of work in some calculations.	2					2									
HCC401	Theory	CO2	Find primitive roots.	2			2.5	2.5	2.5	-	-	2						
PGMAT	Number	CO3 I	Establish existing identities using Mobius inversion formula.	3	3							3				2.5		
	ſ	CO4 S	Solve a Diophantine equation and system of Diophantine equations.			3	3						3					

Principal Ramakrishna Mission Vivekananda Centenary Collogo Rahara, Kolkata 200 Julio

Course Cours Code Name	Co		Pr	ogram	Outco	mes	Average		Prog	ram Sp	ecific O	utcomes		Average mapping	
Code	Name	Name	CO in details	PO1	PO2	РОЗ	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	
		CO1	Understand the basic combinatorics, induction, inclusion exclusion, pigeon hole principle.	2					2						
CC402	nematics	CO2	Understand more advance topics in combinatorics: recurrence relations, generating functions.	3				1	3						1
MATHO	cte Math	CO3	Understand the basic logical concepts, analyzing arguments, quantification theory.	2				2.2	2						2.2
64	Discr	CO4	Apply the concepts to real life problems such as network theory, data structure, optimization etc.		2	2				2					
		CO5	Construct the method of deduction for validity of truth.		2	2				2					
E401	Real -II	CO1	Solve problems relating to determinations of measures of finite, infinite sets.		3	3						3			
ATHO	nced	CO2	Constructing measurable, non-measurable sets and functions.			3	3	3			_		3		
PGMAT	Adva Ani	CO3	Construct different Borel sets.				3	-					-	3	3
lHCE402 PGA anced Add t Analysis- Add II O O	CO1	Classify singularities, Integration of functions on C, applications to counting zeros and poles.	2					2							
HATH	Advar II	CO2	Evaluate definite real integrals.		3	3	_	2.66		_		3	\rightarrow		2.66
PGI	Соп	CO3	Construct Mobius transformation between regions.		3	3	_					3			
	=	СО1	Explain the fundamental concepts of algebraic topology and their role in modern mathematics and applied contexts.	3					3		\neg	-			
THCE403	fopology –	CO2	Apply problem-solving using algebraic topology techniques applied to diverse situations in physics, engineering and other mathematical contexts.		2	2		2.7		2					
PGMATI	gebraic 7	CO3	Demonstrate accurate and efficient use of algebraic topology techniques.	3	3						3				2.7
	Ŧ	CO4	Demonstrate capacity for mathematical reasoning through analyzing, proving and explaining concepts from algebraic topology.	3	3			ľ			3				Cur

Principal 1 Ramakrishna Mission Vivekananda Centenory College Rahara, Kolkato-700 118

Course	Course Code Name	Co		Р	ogram	Outco	omes	Average		Prog	ram Sp	ecific O	utcomes		Average mapping	
Code	Name	Name	CO in details	PO1	PO2	РОЗ	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6		
3404	ifold-II	COI	Understand the normal curvature of a surface, its connection with the first and second fundamental form and Euler's theorem.	3					3							
LHCH	Man	CO2	Understand the concept of topological manifolds.	2				1	2							
WWS	ential	CO3	Understand the concept of Lie group.	2				2.25	2						2.25	
2	Differ	CO4	Solve problems using Stoke's theorem, line integral and Green's theorem.		2	2				2						
3405	=	CO1	Understand the concept of advanced cosmology.	2					2							
ATHCI	mology	CO2	Use an understanding of our galaxy to contrast and compare it with other galaxies as to type, contents, age, luminosity, motion, and size.		2	2		2.33		2					2.33	
PGM	Cos	СОЗ	Use cosmological models to analyze the size, age, structure, and motion of the universe overall.	3	3						3					
90	logy-	COI	Apply and extend classical models in mathematical biology.		2	2				2						
1ATHCE4	natical Bio II	CO2	Construct mathematical models for biological systems like Continuous models for two, three or more interacting populations, Interaction of Ratio- dependent models.		2	2		2.33		2					2.33	
PGN	Mathen	CO3	Use sophisticated mathematical techniques in the analysis of mathematical models in biology.		3	3					\neg	3				
		СО1	Define and formulate linear programming problems and solve them using appropriate techniques and optimization solvers, interpret the results obtained and translate solutions into directives for action.	3					3							
HCE407	cscarch-I	CO2 F	Understand the concept of Queuing theory, simulation, Theory of nventory Control, Information theory, Coding theory and Geometric rogramming.	3			- -		1	3						
GMATI	rations F	CO3 (Conduct and interpret post-optimal and sensitivity analysis and explain the rimal-dual relationship.	2				2.6	2		1				2.6	
-	0 De	CO4 D	evelop mathematical skills to analyse and solve integer programming and etwork models arising from a wide range of applications.		2	2		ľ		2						
	C		ffectively communicate ideas, explain procedures and interpret results ad solutions in written and electronic forms to different audiences.		3	3						3			hi.d.	

Principal Ramakrishna Mission Vivekanarida Centenory College Rahara, Malacta 200 118

Course Code	Course	Co	CO in details	Р	rogran	Outco	omes	Average		Prog	ram Sp	ecific O	utcomes		Average mapping
				POI	PO2	РОЗ	PO4	mapping strength	PSO1	PSO2	PSO3	PSO4	PSOS	PSOG	
~	cs-II	C01	Describe the physical properties of a fluid.		2	2				2			1505	1500	
THCE40	Mechani	CO2	Demonstrate the application point of hydrostatic forces on plane and curved surfaces.		3	3		1				3			
PGMA	ntinuum	соз	Calculate the pressure distribution for incompressible fluids.		3	3		2.75				3			2.75
	ů	CO4	Calculate the hydrostatic pressure and force on plane and curved surfaces.			3	3						3		
_		соі	Demonstrate a sound technical knowledge of their selected project topic.	2					2						
FIICC40	ct Work	CO2	Design engineering solutions to complex problems utilising a systems approach.		2	2				2	+	\neg			
PGMA'	Projec	CO3	Undertake problem identification, formulation and solution.	3	3			2.5		\dashv	3	\neg	-+		2.5
		CO4	Conduct an engineering project.		3	3					+	3			
	5	01	Show competence in identifying relevant information, defining and explaining topics under discussion.	3	1				3	+	+	+		\rightarrow	
THSS04	resentati	CO2 1	Demonstrate depth of understanding, use primary and secondary sources.		2	2	-	F	\rightarrow	2	+	+	\rightarrow	_	
PGMA	c minar P	2O3 I	Demonstrate complexity, insight, cogency, independent thought, relevance, nd persuasiveness.		2	2	_	2.5	+	2	╉	+	+	_	2.5
	х С	O4 E	valuate information and use and apply relevant theories.		3	3		ŀ	+	+	+	3	+	_	
	Grand Average PO 2.64 Grand Average PSO 2.72														

Principal Ramakrishna Mission Vivekananda Centenory College Rahara, Kolkcta-700 118

			Ramakrishna Mission Vivekananda Centenary Colle	ge									
			Consolidated CO-PO-PSO Mapping										
			, stoot mapping		F	0				P	so		
Course Code	Course Name	COs	CO Description	1	2	3	4	Average mapping strength	1	2	3	4	Average mapping strength
ar he is the start		CO 1:	Semester I				1.00			1.3			
101	B		Understand the objectives, motivation and types of research	3						3			
É	lolo		Collect data (primery or secondary) has the standard of the secondary has the secondary of the secondary has the seconda	_			3		3				
М Ц	cese	CO 3:	data.		3			3			3		3
H	Mei	CO 4:	Analyse the data with hypothesis testing, generalization and interpretation			3		-				2	
		CO 5:	Discuss the application of results and write the thesis.			3		1				3	
02	. St	CO 1:	Explain and use TeX and LaTeX.		2				3			5	
HL	uter	CO 2:	Understand the advantages of LaTeX over other more traditional software's.	3				1		3			
W	omp	CO 3:	Prepare handouts and presentations using LaTeX.				3	2.8			3		3
DHd	Cc	CO 4:	Understand the core Python scripting elements such as variables and flow control structures.	3				2.0			3		5
		CO 5:	Use Python to read, write, demonstrations files.			3				_		3	
		CO 1:	Identify and retrieve relevant publications within a field of research and write a literature review by searching the literature systematically.		3				3			5	
TH03	review	CO 2:	Select representative scientific sources from several perspectives relevant to the assignment.		3					3			
DMA'	ature	CO 3:	Write a research proposal for obtaining Financial assistance from national funding agencies.				3	3				3	3
Hd	Lite	CO 4:	Draw conclusions related to the research problem and give recommendations towards new research opportunities.				3				3		
		CO 5:	Represent and systematically structure a discussion on the theories and experimental results and define, design and write a literature review independently			3				÷.	3		
		CO 1:	Understanding the fundamental concepts and methods in algebraic topology.	3					3				
4	ogy	CO 2:	Explain particular homotopy and homology theory.	3				1	3				
MATH 0	tic Topol	CO 3:	Formulate and solve problems of a geometrical and topological nature in mathematics.		3			3		3			3
OHA	Algebra	CO 4:	Apply problem-solving using algebraic topology techniques and theorems including the Fundamental theorem of Algebra, Separation Theorem in the plane, Selfert – van Kampen Theorem.	3			3	n. Ka	3	L.			5

Principa Ramakrishna Mission Vivekananda Centenary College Rahara, Kolkata-700 118

Course	Course				F	0	_			Р	so		
Code	Name	COs	CO Description	1	2	3	4	Average mapping strength	1	2	3	4	Verage 1apping trength
		CO 1:	Understand Infinite products of complex numbers										~ = ~
~	SiS	CO 2:	Understand the concept of Spherical metrics. Normal Communication	3					3				
H H	ylar	002.	Theorem	3					2				
LY	Ar	CO 3:	Use the Mittag-Leffler Theorem Gamma functions, Weight and Theorem						3				
	plex	CO 4:	Classify singularities. Integration of functions on C and lined	3				1	3				
E	L mo	CO 4.	zeros and poles.	3					2				3
	0	CO 5:	Evaluate definite real integrals	5					3				
		CO 6:	Construct Mobius transformation between regions		3					3			
80		CO 1:	Understanding of our galaxy		3					3		_	
H	ogy	00.0	Contrast and compare our galaxy.	3						3			
l ¥ l	D m o	CO 2:	luminosity motion and size			2				-			
<u> </u>	Cos		Using cosmological models to and an interview in the			3		3			3		3
<u> </u>		CO 3:	universe overall.			3					3		5
					Grand	Averag	e PO	2.97	Grand	Aver	rage P	50	3

Principal Ramakrishna Mission Vivekananda Centenary College Rahara, Kolkata-700 118