CO-PO-PSO Mapping B. Sc (Hors) in Computer Science

|                                                                   | т — | l V                                                                                                                                                                                                        |       |        | - | 0 | - |   | Γ                              |   |   | PS | 0 |   |   |                                |
|-------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---|---|---|---|--------------------------------|---|---|----|---|---|---|--------------------------------|
| Course<br>Name                                                    | COs | CO Description                                                                                                                                                                                             | 1     | 2      | 3 | 4 | 5 | 6 | Average<br>mapping<br>strength | 1 | 2 | 3  | 4 | 5 | 6 | Average<br>mapping<br>strength |
|                                                                   |     | Semes                                                                                                                                                                                                      | ter I |        |   | , | _ |   |                                |   |   |    |   |   |   |                                |
| +: Theory                                                         | CO1 | Discuss, memorize and understand the different concept of C/C++ programming constructs and classes for code reuse.                                                                                         |       | 3      |   |   |   |   |                                | 3 |   |    |   |   |   |                                |
| g C/C+<br>1)                                                      | CO2 | Solve problems and propose algorithms, pseudo codes and flowcharts for it.                                                                                                                                 |       |        |   | 3 |   |   |                                |   |   | 3  | 3 |   |   |                                |
| als usin                                                          | CO3 | Identify real life problems and convert it to computational problems.                                                                                                                                      |       |        | 3 |   |   |   |                                |   | 3 | 3  |   |   |   |                                |
| Programming Fundamentais using C/C++: Theory<br>& Lab (UGCMSCC01) | CO4 | Apply the concepts of structural and object oriented programming such as loops, functions, structure, class, inheritance, friend functions, and virtual functions to develop programs for problem solving. |       |        | 3 |   |   |   | 3                              |   |   | 3  |   |   |   | 3                              |
| ammla                                                             | CO5 | Analyse and Compare approaches to model efficient and standard programs.                                                                                                                                   |       |        |   | 3 | 3 |   |                                |   |   |    | 3 |   |   |                                |
| Progr                                                             | CO6 | Evaluate, design, compile, run and debug programs for software development.                                                                                                                                |       |        |   | 3 |   |   |                                |   |   |    |   | 3 | 3 |                                |
| cture:<br>:02)                                                    | CO1 | Ability to define the basic architectural organization and design of computer.                                                                                                                             | 3     |        |   |   |   |   |                                | 3 |   |    |   |   |   |                                |
| Archite                                                           | CO2 | Ability to understand the basic structure, operation and characteristics of digital computer.                                                                                                              |       | 3      |   |   |   |   |                                | 3 | 3 |    |   |   |   |                                |
| Computer System Architecture:<br>Theory & Lab (UGCMSCC02)         | CO3 | Ability to understand the arithmetic and logic unit as well as the concept of pipelining with hierarchical memory system including cache memories and virtual memory.                                      |       | 3      | 3 |   |   |   | 3                              | 3 | 3 |    |   |   |   | 3                              |
| Comp                                                              |     | Distinguish between different ways of communicating with I/O devices and standard I/O interfaces                                                                                                           |       |        |   |   | 3 |   |                                |   |   |    | 3 |   | 3 |                                |
|                                                                   |     | S                                                                                                                                                                                                          | emes  | ter II |   |   | , |   |                                |   |   |    |   |   |   |                                |
| & Lab                                                             | CO1 | Discuss, memorize and understand the different concept of<br>Java programming constructs and classes for code reuse.                                                                                       |       | 3      |   |   |   |   |                                | 3 |   |    |   |   |   |                                |
| Theory & Lab<br>3)                                                |     | Identify real life problems and convert it to computational problems.                                                                                                                                      |       |        |   |   |   | 3 |                                |   |   |    |   | 3 | 3 |                                |

Principal Ramakrishna iviission Vivekanarida Centenary College Raharo, Kolkata-700 118

|                                                       | T   |                                                                                                                                                                                        | I    |        |   | PO |     |   | T       |          |     |   | PSO |     |     |                                |
|-------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|---|----|-----|---|---------|----------|-----|---|-----|-----|-----|--------------------------------|
| Course                                                | 100 | Os CO Description                                                                                                                                                                      |      | 1      | 2 | 3  | 4   | 5 | Average | strengtn | 1   | 2 | 3   | 4 5 | 6   | Average<br>mapping<br>strength |
| Programming in JAVA:                                  | со  | Analyse the concepts of object oriented programming such as loops, functions, class, inheritance, packages, multithreading and abstract class to develop programs for problem solving. |      |        |   | 3  |     |   | 3       |          |     | 3 | 3   |     |     | 3                              |
| Programn                                              |     | Analyse and Compare approaches to model efficient and standard programs for real life application development.  Evaluate, design, compile, run and debug programs for                  |      |        |   | 3  |     |   |         |          | -   |   | 3   |     |     |                                |
| la la                                                 |     | Software development.  Ability to define and understand the notion of mathematical thinking, mathematical proofs, and algorithmic thinking.                                            | 3    | 3      | 3 | 3  | 3 3 | 3 |         |          | 3   | 3 |     | 3   |     |                                |
| Discrete Structures: Theory & Tutorial<br>(UGCMSCC04) | CO2 | Understand some basic properties of graphs and related discrete structures, and be able to relate these to practical examples.                                                         |      | 3      |   |    |     |   |         |          | 3   | 3 |     |     |     |                                |
| tures: Th                                             | CO3 | Understand the basics of combinatorics, and be able to apply the methods from these subjects in problem solving                                                                        |      | 3      |   |    |     |   | 3       |          |     | 3 | 3   |     |     |                                |
| crete Struc                                           | CO4 | Understand asymptotic notation, its significance, and be able to use it to analyse asymptotic performance for some basic algorithmic examples                                          |      |        |   | 3  |     |   |         |          |     |   | 3 3 |     |     |                                |
| Disc                                                  | CO5 | Ability to determine effective algebraic techniques to analyse basic discrete structures and algorithms and be able to apply them in problem solving.                                  |      |        |   | 3  |     |   |         |          |     |   | 3   |     | 3   |                                |
|                                                       | ,   | Sei                                                                                                                                                                                    | nest | er III |   |    |     |   |         |          |     |   |     |     |     |                                |
| MSCC05)                                               | 1 1 | Ability to define fundamental data structures and with the manner in which these data structures can best be implemented.                                                              | 3    |        |   |    |     |   |         | 3        | 3 3 | 3 |     |     |     |                                |
| Cab (VGC                                              | CO2 | Ability to understand the complexity of basic operations like insert, delete, search on these data structures.  Ability to analyse and know the applications of algorithms             |      | 3      | 3 |    |     |   |         | 3        | 3   | 3 |     |     |     |                                |
| :: Theory & Lab (UGCMSCC05)                           | CO3 | for sorting, pattern matching etc Ability to choose a data structure to suitably model any data used in computer applications.                                                         |      |        |   | 3  |     |   | 3       |          |     | 3 | 3 3 |     | Con | 3                              |

|                                             |     |                                                                                                                                                                                    |   |   | F | o |   |   | I                              |   |   | PS | 0 |   |   |                                |
|---------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------------------------------|---|---|----|---|---|---|--------------------------------|
| Course<br>Name                              | со  | CO Description                                                                                                                                                                     | 1 | 2 | 3 | 4 | 5 | 6 | Average<br>mapping<br>strength | 1 | 2 | 3  | 4 | 5 | 6 | Average<br>mapping<br>strength |
| uctures                                     | cos | Ability to assess efficiency trade-offs among different data structure implementations.                                                                                            |   |   |   |   | 3 |   |                                |   |   |    | 3 | 3 |   |                                |
| Data Structure                              | coe | Design programs using various data structures including<br>hash tables, Binary and general search trees, heaps, graphs<br>etc.                                                     | , |   |   |   |   | 3 |                                |   |   |    |   |   | 3 |                                |
|                                             | CO1 | lot maden an anotine a system a and described.                                                                                                                                     | 3 |   |   |   |   |   |                                | 3 |   |    |   |   |   |                                |
| CMSCC06)                                    | COZ | Describe the important computer system resources and the role of operating system in their management policies and algorithms.                                                     |   | 3 |   |   |   |   |                                |   | 3 | 3  |   |   |   |                                |
| Operating Systems: Theory & Lab (UGCMSCC06) | CO3 | Understanding of design issues, various process management concepts, scheduling, synchronization, and deadlocks associated with operating systems.                                 |   | 3 |   |   |   |   |                                |   | 3 | 3  |   |   |   |                                |
| ıs: Theory                                  | CO4 | Understanding about multithreading, concepts of memory management including virtual memory, file system interface and implementation, disk management.                             |   |   | 3 |   |   |   | 3                              | 3 | 3 |    |   |   |   | 3                              |
| Ing System                                  | CO5 | Describe the functions of a contemporary operating system with respect to convenience, efficiency, and the ability to adapt to different operating systems.                        |   | 3 |   | 3 |   |   |                                | 3 |   |    | 3 |   |   |                                |
| Operat                                      | CO6 | Ability to categorise and identify potential threats to operating systems and will have the ability to explain the design criteria of the security features to guard against them. |   |   |   | 3 | 3 |   |                                |   |   |    | 3 |   | 3 |                                |
| (2005)                                      | CO1 | Familiarize with contemporary issues in network technologies.                                                                                                                      | 3 |   |   |   |   |   |                                | 3 |   |    |   |   |   |                                |
| orks: Theory & Lab (UGCMSCC07)              | CO2 | Know the layered model approach explained in OSI and TCP/IP network models and Identify different types of network devices and their functions within a network.                   | 3 |   |   |   |   |   |                                | 3 |   |    |   |   |   |                                |
| heory & Le                                  | соз | Understand the structure of Data Communications System and its components. Be familiarize with different network terminologies                                                     |   | 3 |   |   |   |   | 3                              | 3 | 3 |    |   |   |   | 3                              |
| orks: T                                     |     | Learn and illustrate the basic routing mechanisms, IP addressing scheme and internetworking concepts                                                                               |   |   | 3 |   |   |   |                                |   |   | 3  | 3 |   |   | Principal                      |

Ramakrishna Mission
Vivekananda Centenary College
Rahara, Kolkata-700 118

|                                                                   | Π   |                                                                                                                                                                                            |      | _      |   | 0 |   |   |                    |          |   |   | PS | 0 |   |         |                                |
|-------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|---|---|---|---|--------------------|----------|---|---|----|---|---|---------|--------------------------------|
| Course<br>Name                                                    | COs | CO Description                                                                                                                                                                             | 1    | 2      | 3 | 4 | 5 | 6 | Average<br>mapping | strength | 1 | 2 | 3  | 4 | 5 | 6       | Average<br>mapping<br>strength |
| \$                                                                | CO5 | Able to analyse the IP and TCP Internet protocols.                                                                                                                                         |      |        |   | 3 |   |   |                    |          |   |   |    | 3 |   |         |                                |
| Computer Netw                                                     |     | Ability to understand and determine the major design issues of WAN, LAN and wireless networks, its network configuration and maintenance along with the fundamentals of network security.  |      |        |   |   | 3 | 3 |                    |          |   |   |    |   | 3 | 3       |                                |
|                                                                   |     | Si                                                                                                                                                                                         | emes | ter IV |   |   |   |   |                    | _        |   |   |    |   |   |         |                                |
| is of<br>& Lab                                                    | CO1 | Ability to define how to analyse algorithms and estimate their worst-case and average-case behaviour.                                                                                      | 3    |        |   |   |   |   |                    |          | 3 |   |    |   |   |         |                                |
| Design and Analysis of<br>Algorithms: Theory & Lab<br>(UGCMSCCO8) | CO2 | Ability to understand good principles of algorithm design.                                                                                                                                 |      | 3      |   |   |   |   | 3                  |          | 3 | 3 |    |   |   |         | 3                              |
| ign and<br>ithms: (UGCM                                           | CO3 | Ability to analyse and be accustomed to the description of algorithms in both functional and procedural styles.                                                                            |      |        |   | 3 |   |   |                    |          |   |   |    | 3 |   |         |                                |
| Des                                                               | CO4 | Ability to apply their theoretical knowledge in practice and design algorithms for problem solving.                                                                                        |      |        |   |   |   | 3 |                    |          |   |   |    |   |   | 3       |                                |
| rep                                                               | CO1 | Ability to define and understand the analysis and design of complex software systems.                                                                                                      | 3    | 3      |   |   |   |   |                    |          | 3 | 3 |    |   |   |         |                                |
| eory &                                                            | CO2 | Ability to apply software engineering principles and techniques.                                                                                                                           |      |        | 3 |   |   |   |                    |          |   | 3 | 3  |   |   |         |                                |
| Software Engineering: Theory & Lab<br>(UGCMSCC09)                 | CO3 | To manage time, processes and resources effectively by<br>prioritising competing demands to achieve personal and<br>team goals Identify and analyses the common threats in<br>each domain. |      |        |   | 3 |   |   | 3                  |          |   |   |    | 3 | 3 |         | 2.888889                       |
| ware Er                                                           | CO4 | Ability to work as an effective member or leader of software engineering teams.                                                                                                            |      |        |   |   | 3 |   |                    |          |   | 2 |    |   | 3 |         |                                |
| Soft                                                              | COS | Ability to develop efficient, reliable, robust and cost-<br>effective software solutions.                                                                                                  |      |        |   |   |   | 3 |                    |          |   |   |    |   |   | 3       |                                |
| y & Lab                                                           | CO1 | Ability to define the database systems and database management systems software, formulate, using SQL, solutions to a broad range of query and data update problems                        | 3    |        |   |   |   |   |                    |          | 3 |   |    |   |   |         |                                |
| ems: Theory & Lab<br>0)                                           |     | Ability to understand the basics of transaction processing and concurrency control and understand the database storage structures and access techniques.                                   |      | 3      |   |   |   |   |                    |          | 3 | 3 |    |   |   | (See le | n Ka                           |

|                                                    |     |                                                                                                                                             |      |       | P | 0 |   |   |                    |   |     | PS | 0 |   |   |                                |
|----------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|-------|---|---|---|---|--------------------|---|-----|----|---|---|---|--------------------------------|
| Course<br>Name                                     | COs | CO Description                                                                                                                              | 1    | 2     | 3 | 4 | 5 | 6 | Average<br>mapping | 9 | 1 2 | 3  | 4 | 5 | 6 | Average<br>mapping<br>strength |
| Database Management Syst<br>(UGCMSCC1              | CO3 | Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database.                           |      |       | 3 |   |   |   | 3                  |   | 3   |    |   |   |   | 3                              |
| lanage<br>(U                                       | CO4 | Compare, contrast and analyse the various emerging technologies for database systems.                                                       |      |       |   | 3 |   |   |                    |   |     | 3  | 3 |   |   |                                |
| ibase N                                            | COS | Analyse strengths and weaknesses of the applications of database technologies to various subject areas.                                     |      |       |   | 3 |   |   |                    |   |     |    | 3 |   |   |                                |
| Date                                               | CO6 | Ability to model data in applications using conceptual modelling tools such as ER Diagrams and design data base schemas based on the model. |      |       |   |   |   | 3 |                    |   |     |    |   |   | 3 |                                |
|                                                    |     | So                                                                                                                                          | emes | ter V |   |   |   |   |                    |   |     |    |   |   |   |                                |
| / & Lab                                            | CO1 | Ability to define the terms related to the Internet and how the Internet is changing the world                                              | 3    |       |   |   |   |   |                    |   | 3   |    |   |   |   |                                |
| Internet Technologies: Theory & Lab<br>(UGCMSCC11) | CO2 | To understand how computers are connected to the Internet and demonstrate the ability to use the World Wide Web                             |      | 3     |   |   |   |   |                    |   | 3 3 |    |   |   |   |                                |
| chnologies: Th<br>(UGCMSCC11)                      | CO3 | Demonstrate the ability to make use of electronic mail and other internet based services.                                                   |      |       |   | 3 |   |   | 3                  |   |     | 3  |   |   |   | 3                              |
| et Tech                                            | CO4 | Compare and analyse the design principles of Web pages and how they are created.                                                            |      |       |   | 3 |   |   |                    |   |     |    | 3 |   |   |                                |
| Intern                                             | CO5 | To develop an ability to create basic Web pages with HTML                                                                                   |      |       |   | 3 |   |   |                    |   |     |    |   |   | 3 |                                |
| eory &                                             | CO1 | To understand a formal connection between algorithmic problem solving and the theory of languages.                                          |      | 3     |   |   |   |   |                    |   | 3   |    |   |   |   |                                |
| y of Computation: Theory &<br>Tutorial (UGCMSCC12) | CO2 | Ability to identify the practical view towards the applications of these ideas in the engineering part as well.                             |      | 3     |   |   |   |   | 3                  |   | 3   |    |   |   |   | 3                              |
| y of Compi<br>Tutorial (U                          | CO3 | Become proficient in key topics of theory of computation, and to have the opportunity to explore the current topics in this area.           |      |       |   | 3 |   |   | ,                  |   |     | 3  |   |   |   | 3                              |

Principal
Ramakrishna Mission
Vivekananda Centenary College
Rahata, Kolkata-700 113

|                                                   |     |                                                                                                                                                                              |         |         |      | PO    |   |   | Γ                              | T |   | PS | 50 |   |   |         |                     |
|---------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------|-------|---|---|--------------------------------|---|---|----|----|---|---|---------|---------------------|
| Course<br>Name                                    | co  | CO Description                                                                                                                                                               | 1       | 2       | ! :  | 3 4   | 5 | 6 | Average<br>mapping<br>strength | 1 | 2 | 3  | 4  | 5 | 6 | Average | mapping<br>strength |
| Theor                                             | CO4 | Evaluate and develop by applying the theoretical knowledge into a mathematical (abstract) view towards algorithmic design and in general computation itself.                 |         |         |      |       | 3 |   |                                |   |   |    |    | 3 |   |         |                     |
|                                                   |     | S                                                                                                                                                                            | emes    | ter VI  |      |       |   |   |                                | _ |   | _  |    | _ |   |         |                     |
| ISCC13)                                           | CO1 | Ability to explain what constitutes "Artificial" Intelligence and how to identify systems with Artificial Intelligence.                                                      |         | 3       |      |       |   |   |                                |   | 3 |    |    |   |   |         |                     |
| (UGCN                                             | CO2 | Explain the limitations of current Artificial Intelligence techniques.                                                                                                       |         | 3       |      |       |   |   |                                |   | 3 |    |    |   |   |         |                     |
| ory & Lab                                         | соз | Identify problems that are amenable to solution by AI methods, and which AI methods may be suited to solving a given problem.                                                |         |         |      | 3     |   |   |                                |   |   | 3  | 3  |   |   |         |                     |
| Artificial Intelligence: Theory & Lab (UGCMSCC13) | CO4 | Categorize a given problem in the language/framework of different AI methods (e.g., as a search problem, as a constraint satisfaction problem, as a planning problem, etc.). |         |         |      | 3     |   |   | 3                              |   |   |    | 3  |   |   |         | 3                   |
| al Intell                                         | CO5 | Evaluate and implement basic AI algorithms (e.g., standard search or constraint propagation algorithms).                                                                     |         |         |      |       | 3 |   |                                |   |   |    | 3  |   |   |         |                     |
| Artificia                                         | CO6 | Design and perform an empirical evaluation of different algorithms on a problem formalisation, and state the conclusions that the evaluation supports.                       |         |         |      |       |   | 3 |                                |   |   |    |    |   | 3 |         |                     |
| ry & Lab                                          | CO1 | Ability to recall the concepts and relevant mathematics of computer graphics.                                                                                                | 3       |         |      |       |   |   |                                | 3 |   |    |    |   |   |         |                     |
| Graphics: Theo<br>(UGCMSCC14)                     |     | Ability to describe the importance of viewing and projections and define the fundamentals of animation and Virtual reality technologies                                      |         | 3       |      |       |   |   | 3                              | 3 | 3 |    |    |   |   |         | 3                   |
| <u>-</u>                                          |     | Ability to apply various algorithms to scan, convert the basic geometrical primitives, transformations, area filling, clipping.                                              |         |         |      | 3     |   |   |                                |   |   | 3  | 3  |   |   |         |                     |
| Com                                               | - 1 | Ability to design basic graphics application programs that display graphic images to given specifications.                                                                   |         |         |      |       | 3 |   |                                |   |   |    |    | 3 | 3 |         |                     |
|                                                   |     | Discipline Spe                                                                                                                                                               | cific E | Electiv | e Co | urses |   |   |                                |   |   |    |    |   | ( | , ,     | 1                   |

|                                                 |     |                                                                                                                                                                       |   |   | F | 0 |   |   |                                |   |   | PS | 0 |   |   |                                |
|-------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------------------------------|---|---|----|---|---|---|--------------------------------|
| Course<br>Name                                  | COs | CO Description                                                                                                                                                        | 1 | 2 | 3 | 4 | 5 | 6 | Average<br>mapping<br>strength | 1 | 2 | 3  | 4 | 5 | 6 | Average<br>mapping<br>strength |
| ಷ                                               |     | Ability to define the basic architecture, operation and                                                                                                               |   |   |   |   |   |   |                                |   |   |    |   |   |   |                                |
| 2.0                                             | CO1 | applications of Microprocessor.                                                                                                                                       | 3 |   |   | _ | _ | - |                                | 3 | _ | _  |   |   |   |                                |
| r: The                                          | CO2 | Ability to understand interrupts as well as their usage in different hardware approaches.                                                                             |   | 3 |   |   |   |   |                                | 3 |   |    |   |   |   |                                |
| Microprocessor: Theory & Lab (UGCMSDSE01)       | CO3 | Ability to analyse the basic architecture of upgraded microprocessor and their advantages over older versions.                                                        |   |   |   | 3 |   |   | 3                              |   |   | 3  | 3 |   |   | 3                              |
| Micr                                            | CO4 | Ability to evaluate different ways of communicating with internal and external I/O devices.                                                                           |   |   |   |   | 3 |   |                                |   |   |    |   | 3 |   |                                |
| ab                                              | CO1 | Understand the underlying mathematical formulations across various numerical analysis rules and methods.                                                              |   | 3 |   |   |   |   |                                |   | 3 |    |   |   |   |                                |
| Numerical Methods: Theory & Lab<br>(UGCMSDSE02) | CO2 | Categorize between Bisection method, Secant method,<br>Regula-Falsi method, Newton-Raphson method and<br>different approaches of respective methods.                  |   |   |   | 3 |   |   |                                |   |   | 3  | 3 |   |   |                                |
| I Methods: The<br>(UGCMSDSE02)                  | CO3 | Ability to choose appropriate algorithm for solving different problems.                                                                                               |   |   |   |   | 3 |   | 3                              |   |   |    |   | 3 |   | 3                              |
| merical M                                       | CO4 | Design and adapt existing approaches to suit applications.                                                                                                            |   |   |   |   |   | 3 |                                |   |   |    |   |   | 3 |                                |
| ž                                               | CO5 | Design and implementation of Computer Algebra Systems for real world applications.                                                                                    |   |   |   |   |   | 3 |                                |   |   |    |   |   | 3 |                                |
|                                                 | CO1 | ) 0                                                                                                                                                                   |   | 3 |   |   |   |   |                                |   | 3 | 3  |   |   |   |                                |
| & Lab                                           | CO2 | Compare the advantages and disadvantages of various cloud computing platforms                                                                                         |   |   |   | 3 |   |   |                                |   |   |    | 3 |   |   |                                |
| heory<br>E02)                                   | CO3 | Analyse the trade-offs between deploying applications in the cloud and over the local infrastructure                                                                  |   |   |   | 3 |   |   |                                |   |   |    | 3 |   |   |                                |
| oud Computing: Theory & Lab<br>(UGCMSDSE02)     | CO4 | Analyse the performance, scalability, availability of the underlying cloud technologies and software and also identify security and privacy issues in cloud computing |   |   |   | 3 | 3 |   | 3                              |   |   |    | 3 |   |   | 3                              |
| ond Co                                          | COS | Explain recent research results in cloud computing and identify their pros and cons.                                                                                  |   |   |   |   | 3 | 3 |                                |   | , |    |   | 3 | 3 | Xav                            |

Principal Ramakrishna Misstori Vivekananda Centenary Collego Rahara, Kolkata-700 113

|                                                | $\overline{}$ |                                                                                                                                                |   |   | Р | 0 |   |   |                                |          |   | PS | 0 |          |   |                    |          |
|------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------------------------------|----------|---|----|---|----------|---|--------------------|----------|
| Course<br>Name                                 | COs           | CO Description                                                                                                                                 | 1 | 2 | 3 | 4 | 5 | 6 | Average<br>mapping<br>strength | 1        | 2 | 3  | 4 | 5        | 6 | Average<br>mapping | Strengui |
| ס                                              |               | Design programs for applications in the cloud to solve real-<br>world problem using cloud computing through group                              |   |   |   |   |   |   |                                |          |   |    |   |          | 3 |                    |          |
|                                                | CO6           | collaboration.                                                                                                                                 |   |   |   |   | _ | 3 |                                | $\vdash$ |   |    |   | $\vdash$ |   |                    | ヿ        |
| & Lab                                          | CO1           | Understand the underlying mathematical relationships across various machine learning algorithms.                                               |   | 3 |   |   |   |   |                                |          | 3 |    |   |          |   |                    |          |
| heory<br>(03)                                  | CO2           | Categorize between supervised, unsupervised machine learning approaches                                                                        |   |   |   | 3 |   |   |                                |          |   | 3  | 3 |          |   |                    |          |
| Learning: Theo<br>(UGCMSDSE03)                 | соз           | Ability to choose appropriate machine learning algorithm for solving a problem                                                                 |   |   |   |   | 3 |   | 3                              |          |   |    |   | 3        |   | 3                  |          |
| Machine Learning: Theory & Lab<br>(UGCMSDSE03) | CO4           | Design and adapt existing machine learning algorithms to suit applications                                                                     |   |   |   |   |   | 3 |                                |          |   |    |   |          | 3 |                    |          |
| Machi                                          | CO5           | Design and implement machine learning algorithms to real world applications                                                                    |   |   |   |   |   | 3 |                                |          |   |    |   |          | 3 |                    |          |
| & Lab                                          | C01           | Understand the techniques of clustering, classification, association finding, feature selection and visualisation on real world data.          | 3 | 3 |   |   |   |   |                                |          | 3 |    |   |          |   |                    |          |
| rheory<br>DSE04                                | CO2           | Apply data mining concepts on real world data for analysis and development.                                                                    |   | 3 |   |   |   |   | 3                              |          |   | 3  |   |          |   | 3                  |          |
| Data Mining: Theory & Lab<br>(UGCMSDSE04)      | CO3           | Ability to assess whether a real world problem has a data mining solution.                                                                     |   |   |   |   | 3 |   |                                |          |   |    |   | 3        |   |                    |          |
| Data M                                         | CO4           | Ability to design a data mining process for an application, including data preparation, modelling and evaluation for research and development. |   |   |   |   |   | 3 |                                |          |   |    |   |          | 3 |                    |          |
|                                                | CO1           | Understand project characteristics and various stages of a project                                                                             |   | 3 |   |   |   |   |                                |          | 3 |    |   |          |   |                    |          |
| t work                                         |               | Understand the conceptual clarity about project organization and feasibility analyses.                                                         |   | 3 |   |   |   |   |                                |          | 3 |    |   |          |   |                    |          |
| Project<br>DSE05)                              |               | Apply sound technical knowledge of their selected project topic in real life application development.                                          |   |   |   | 2 | 2 |   | 2.83                           |          |   | 3  |   |          |   | 3                  |          |
| ation or Project<br>(UGCMSDSE05)               |               | Analyse the learning and understand techniques for project planning, scheduling and execution control                                          |   |   |   | 3 | 3 |   | 2.03                           |          |   |    | 3 |          |   |                    |          |
| Dissertation or Project work<br>(UGCMSDSE05)   |               | Explain recent research oriented development of their selected project topic                                                                   |   |   |   |   | 3 | 3 |                                |          |   |    |   | 3        |   | J. Ke              | ,        |

Principal Ramakrishna Mission Vivekanarida Centenary College Rahara, Kolkata-700 118

|                                                               |     |                                                                                                                                                                     |   |   | P | ) |   |   |                                |   |   | PSC | )   |   |   |                                |
|---------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------------------------------|---|---|-----|-----|---|---|--------------------------------|
| Course<br>Name                                                | COs | CO Description                                                                                                                                                      | 1 | 2 | 3 | 4 | 5 | 6 | Average<br>mapping<br>strength | 1 | 2 | 3   | 4   | 5 | 6 | Average<br>mapping<br>strength |
|                                                               | CO6 | Ability to work in a team for well-planned design and development of futuristic applications.                                                                       |   |   |   |   |   | 3 |                                |   |   |     |     | 3 | 3 |                                |
| Computer<br>Fundamentals: Theory<br>& Lab& Lab<br>(UGCMSGE01) | CO1 | Understand the basics of computer hardware and how software interacts with computer hardware and the concepts of addressing modes.                                  | 3 |   |   |   |   |   | 3                              | 3 | 3 |     |     |   |   | 2.75                           |
| Computer<br>amentals: T<br>& Lab& Lak<br>UGCMSGE0             | CO2 | Apply logic gates and Boolean expression using Boolean algebra.                                                                                                     |   | 3 |   |   |   |   | 3                              |   |   | 2   |     |   |   | 2.75                           |
| Fund                                                          | CO3 | Analyse and design combinational and sequential circuit.                                                                                                            |   |   |   | 3 |   |   |                                |   |   |     | 3   |   |   |                                |
| Introduction to Database System: Theory & Lab<br>(UGCMSGE02)  | CO1 | Ability to define the database systems and database management systems software, formulate, using SQL, solutions to a broad range of query and data update problems | 3 |   |   |   |   |   |                                | 3 |   |     |     |   |   |                                |
| <u>F</u>                                                      |     | Ability to understand the basics of transaction processing                                                                                                          |   | 3 |   |   |   |   |                                | 3 | 3 |     |     |   |   |                                |
| Database System<br>(UGCMSGE02)                                | CO3 | Demonstrate an understanding of normalization theory and apply such knowledge to the normalization of a database.                                                   |   |   | 3 |   |   |   | 3                              |   | 3 |     |     |   |   | 3                              |
| Datab<br>(UGC                                                 | CO4 | Compare, contrast and analyse the various emerging technologies for database systems.                                                                               |   |   |   | 3 |   |   |                                |   |   | 3   | 3   |   |   |                                |
| tion to                                                       | CO5 | Analyse strengths and weaknesses of the applications of database technologies to various subject areas.                                                             |   |   |   | 3 |   |   |                                |   |   |     | 3   |   |   |                                |
| Introduc                                                      | CO6 | Ability to model data in applications using conceptual modelling tools such as ER Diagrams and design data base schemas based on the model.                         |   |   |   |   |   | 3 | :                              |   |   |     |     |   | 3 | 3                              |
| als using C/C++: Theory<br>MSGE03)                            | CO1 | Discuss, memorize and understand the different concept of C/C++ programming constructs and classes for code reuse.                                                  |   | 3 | 3 |   |   |   |                                |   | 3 |     |     |   |   |                                |
| g c/c+                                                        | CO2 | Solve problems and propose algorithms, pseudo codes and flowcharts for it.                                                                                          |   |   |   |   | 3 |   |                                |   |   |     | 3 : | 3 |   |                                |
| als using<br>MSGE03)                                          | соз | Identify real life problems and convert it to computational problems.                                                                                               |   |   |   | 3 |   |   |                                |   |   | 3   | 3   |   |   |                                |

Principal
Ramakrishna Mission
Vivekananda Centenary Colle
Rahara, Kalkata-700 118

|                                                    | $\neg$ | 1                                                                                                                                                                                                          |   |     | P | 0 |   |     |                                |   |   | PS | 0 |   |   |                                |
|----------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|---|---|-----|--------------------------------|---|---|----|---|---|---|--------------------------------|
| Course<br>Name                                     | COs    | CO Description                                                                                                                                                                                             | 1 | 2   | 3 | 4 | 5 | 6   | Average<br>mapping<br>strength | 1 | 2 | 3  | 4 | 5 | 6 | Average<br>mapping<br>strength |
| Programming Fundament                              | CO4    | Apply the concepts of structural and object oriented programming such as loops, functions, structure, class, inheritance, friend functions, and virtual functions to develop programs for problem solving. |   |     | 3 |   |   |     | 3                              |   |   | 3  |   |   |   | 3                              |
| amming                                             |        | Analyse and Compare approaches to model efficient and standard programs.                                                                                                                                   |   |     |   | 3 | 3 |     |                                |   |   |    | 3 |   |   |                                |
| Progr                                              | CO6    | Evaluate, design, compile, run and debug programs for software development.                                                                                                                                |   |     |   | 3 |   |     |                                |   |   |    |   | 3 | 3 |                                |
| ory &                                              | CO1    | Define algorithms and to draw flowcharts for program writing.                                                                                                                                              | 3 |     |   |   |   |     |                                | 3 |   |    |   |   |   |                                |
| n: The<br>E04)                                     | CO2    | Ability to show the installation and running of the Python interpreter                                                                                                                                     | 3 |     |   |   |   |     |                                |   | 3 |    |   |   |   |                                |
| nming in Python: Th<br>Lab (UGCMSGE04)             | CO3    | Understand the Numbers, Math functions, Strings, List,<br>Tuples, Dictionaries and operators in Python                                                                                                     |   | 3   |   |   |   |     | 3                              |   | 3 |    |   |   |   | 2.833333                       |
| ming ir                                            | CO4    | Understand and summarize different File handling operations and packages                                                                                                                                   |   | 3   |   |   |   |     |                                |   | 3 |    |   |   |   |                                |
| Programming in Python: Theory &<br>Lab (UGCMSGE04) | 1      | Apply different decision making statements and loops, different functions and modules                                                                                                                      |   |     | 3 |   |   |     |                                |   |   |    | 2 |   |   |                                |
| <u> </u>                                           | COE    | Design programs using Python for problem solving                                                                                                                                                           |   |     |   |   | 3 | 1   |                                |   |   |    |   | 3 |   |                                |
| ation<br>1)                                        | cos    | Recall English Phonetic Symbols and demonstrate their use with emphasis on various scientific terms.                                                                                                       |   | 3   | 3 |   |   |     |                                | 3 |   |    |   |   |   |                                |
| F S                                                | co     | Utilize various processes of communication                                                                                                                                                                 | _ | 1 3 | 3 | _ |   |     |                                |   | 3 | 1  |   | _ |   |                                |
| English Communication (UGCMSAECC01)                |        | Compare and analyze dialogue, group discussion presentation, interview techniques                                                                                                                          | , |     |   |   |   | 3   | 3                              |   | 2 |    |   |   |   | 2.8                            |
| 250                                                | CO     | Judge different techniques of reading and writing skills.                                                                                                                                                  |   |     |   |   |   | 3 3 |                                |   |   | 3  |   |   |   |                                |
| Englis                                             | cos    | Develop the skill to create original write up in the form of report, proposal, paragraph, review etc.                                                                                                      |   |     |   |   | 3 | 3   |                                |   |   |    |   | 3 |   |                                |
| auce ()                                            | 1      | Define and demonstrate the concept, components and function of natural resources and ecosystems.  Define, illustrate and analyse the cause, effects and control                                            |   | 3   |   |   |   |     |                                | ] | 3 |    |   |   |   |                                |
| Scle                                               | co     | 2 measures of various environmental pollutants.                                                                                                                                                            |   |     |   | 2 |   |     |                                |   | 3 |    |   |   |   |                                |
| nental Science<br>MSAECC02)                        |        | Demonstrate the basic idea about the disasters and it management.                                                                                                                                          | s |     | 3 |   |   |     | 2.6                            |   |   | 3  |   |   |   | 2.6<br>N.Kar                   |

Principal
Ramakrishna Mission
Vivekanarida Centenary College
Rahara, Kolkata-700 118

|                                                     |     |                                                                                                        |   |   | P | 0 |   |   |                                |   |   | PS | ) |   |   |                    |
|-----------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------------------------------|---|---|----|---|---|---|--------------------|
| Course<br>Name                                      | COs | CO Description                                                                                         | 1 | 2 | 3 | 4 | 5 | 6 | Average<br>mapping<br>strength | 1 | 2 | 3  | 4 | 5 | 6 | Average<br>mapping |
| Environ                                             |     | Illustrate and apply the knowledge about the social,                                                   |   |   |   |   |   |   |                                |   |   |    | _ |   |   |                    |
| \ \frac{1}{2} =                                     | CO4 | environmental issues and environmental legislation.                                                    |   |   |   | 3 |   | _ |                                |   |   |    |   |   |   |                    |
| ū                                                   | CO5 | Define, demonstrate and evaluate the impact of human population on the Environment                     |   |   |   |   |   | 2 |                                |   |   |    |   | 2 |   |                    |
| dian<br>02)                                         | CO1 | Define, demonstrate and apply the daily routine, self-evaluation<br>& Integral Personality Development | 3 |   |   |   |   |   |                                | 3 |   |    |   |   |   |                    |
| and In                                              | CO2 | Demonstrate, and apply the Power of thoughts & the Science of Peace                                    |   |   | 3 |   |   |   |                                |   | 3 | 3  |   |   |   |                    |
| Value Education and Indian<br>Culture (UGCMSAECCO2) |     | Demonstrate the relation between Values and enlightened<br>citizenship                                 |   |   | 3 |   |   |   | 2.86                           |   |   |    |   | 2 |   | 2.86               |
| 5 0                                                 | CO4 | Discuss the awareness about the Indian Practice and Culture                                            |   |   |   | 3 |   |   |                                |   |   | 3  |   |   |   |                    |
| \$ E                                                | CO5 | Demonstrate and practice the Four Yogas                                                                |   |   |   |   |   | 2 |                                |   | 3 |    |   |   |   |                    |
| Value<br>Ce da                                      |     | Explain and analyse the idea about Modern India: her hopes, challenges and Swami Vivekananda           |   |   |   | 3 |   | 3 |                                |   |   |    | 3 |   |   |                    |
|                                                     |     | Grand Average                                                                                          |   |   |   |   |   |   | 2.97                           |   |   |    |   |   |   | 2.5                |

Ramokrupha https://
Vivekanarida Centerory College
Ranara, Kolkata-700 1 (2)