RAMAKRISHNA MISSION VIVEKANANDA CENTENARY COLLEGE, RAHARA, KOLKATA Undergraduate Admission Test: Mathematics Honours

Full Marks : 75 Time : 1 hou	
	Each question has only one correct answer
	Each question carries 3 marks for correct answer and (-1) mark for wrong answer.
	(The symbols have their usual meanings)
1.	The period of $\sin^2 \theta$ is
	a. π^2
	b. <i>π</i>
	c. π^3
	d. $\frac{\pi}{2}$
2.	The solution of $\sin x + \cos x = 1$ is
	a. $x = 2n\pi$
	b. $x = 2n\pi + \frac{\pi}{2}$
	c. $x = n\pi + (-)^n \frac{\pi}{4} - \frac{\pi}{4}$
	d. None of these.
3.	If the lengths of the sides of triangle are 3, 5, 7, then the largest angle of the triangle is
	a. $\frac{\pi}{2}$
	b. $\frac{5\pi}{6}$
	c. $\frac{2\pi}{3}$
	d. $\frac{3\pi}{4}$
4.	The remainder left out when $8^{2n} - (62)^{2n+1}$ is divided by 9 is
	a. 2
	b. 7
	d. 9
5.	The solution of the following linear programming problem:
	Minimise, z = 200x + 500y
	subject to the constraints:
	$x + 2y \ge 10, 3x + 4y \le 24, x \ge 0, y \ge 0$ is
	a. $z = 2300$, at (4, 3)
	b. $z = 2100$, at (4, 3)
	c. $z = 2300$, at (3, 4)
	d. $z = 2100$, at (3, 4)
6.	The number of complex numbers z such that
	z-1 = z+1 = z-i equals
	a. 0
	b. 1
	c. 2 d. None of these

d. None of these.

- 7. From a group of 9 peoples, 4 have to be selected. In how many ways can the 4 peoples be selected so that one of them is always in the team?
 - a. 45
 - b. 49
 - c. 54
 - d. 56

8. The third term of geometric progression is 4, the product of the first 5 term is

- a. 4³
- b. 4⁴
- c. 4⁵
- d. None of these
- 9. The straight lines x + y = 0, 3x + y 4 = 0, x + 3y 4 = 0 form a triangle which is a. isosceles
 - b. equilateral
 - c. right angled
 - d. none of these

10. The two circles $x^2 + y^2 = ax$ and $x^2 + y^2 = 1$ touch each other if

- a. *a* = 2
- b. |a| = 2
- c. 2|a| = 1
- d. |a| = 1

11. If $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f(x + y) = f(x)f(y) for all x, yand f(5) = 2, f'(0) = 3, then f'(5) is

- a. 0
- b. 1
- c. 6
- d. 2
- 12. Consider the relations R₁ and R₂ defined as a R₁b ⇔ a²+b²=1 for all a, b ∈ R and (a, b) R₂ (c, d) ⇔ a+d=b+c for all (a, b), (c, d) ∈ N×N. Then a. R₁ and R₂ both are equivalence relations
 b. only R₁ is an equivalence relation
 c. only R₂ is an equivalence relation
 d. neither R₁ nor R₂ is an equivalence relation
 - a netalet 11 net 112 is an equivalence relation
- **13.** In a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately
 - a. 20.5
 - b. 22.0
 - c. 24.0
 - d. 25.5

14. Let $E = \{1,2,3,4\}$ and $F = \{1,2\}$, then the number of onto functions from E to F is

- a. 14
- b. 16
- c. 12
- d. 08

15. If $3^{x} = 4^{x-1}$, then x =a. $\frac{2 \log_{3} 2}{2 \log_{3} 2 - 1}$ b. $\frac{1}{2 - \log_{2} 3}$ c. $\frac{2}{1 - \log_{4} 3}$

- d. $\frac{2 \log_2 3}{2 \log_2 3 1}$
- 16. Find the value of sin $(2 \tan^{-1}(0.75))$
 - a. 0.75
 - b. 1.5
 - c. 0.96
 - d. 0.5

17. If A is a square matrix such that $A^2 = A$, then $(I - A)^3 + A$ is equal to

- a. I
- b. O
- c. I A
- d. I + A
- **18.** Which of the following function differentiable at x = 0?
 - a. $\cos(|x|) + |x|$
 - b. $\cos(|x|) |x|$
 - c. $\sin(|x|) + |x|$
 - d. $\sin(|x|) |x|$

19. The absolute maximum value of $y = x^3 - 3x + 2$ in $0 \le x \le 2$ is

- a. 0
- b. 2
- c. 4
- d. 6

20. Let $f: (-1 \ 1) \to \mathbb{R}$ be a continuous function. If $\int_0^{\sin x} f(t) dt = \frac{\sqrt{3}}{2} x$, then $f\left(\frac{\sqrt{3}}{2}\right) = a \cdot \frac{\sqrt{3}}{2}$ b. $\sqrt{3}$ c. $\sqrt{\frac{3}{2}}$ d. $\frac{1}{2}$

- 21. The area bounded by the curves $y = |x^2 1|$ and y = 1 is a. $\frac{2}{3}(\sqrt{2} + 1)$ b. $\frac{4}{3}(\sqrt{2} - 1)$ c. $2(\sqrt{2} - 1)$
 - d. $\frac{8}{3}(\sqrt{2}-1)$

22. If $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ with y(1) = 1, then a value of x satisfying y(x) = e is a. $\sqrt{3}e$ b. $\frac{\sqrt{3}}{2}e$ c. $\sqrt{2}e$ d. $\frac{e}{\sqrt{2}}$ If \vec{a} , \vec{b} and \vec{c} are unit vectors, then 23. $\left|\vec{a} - \vec{b}\right|^2 + \left|\vec{b} - \vec{c}\right|^2 + \left|\vec{c} - \vec{a}\right|^2$ does not exceed 4 a. 9 b. c. 8 d. 6 The shortest distance between the lines $\frac{x+7}{-6} = \frac{y-6}{7} = z$ and 24. $\frac{7-x}{2} = y - 2 = z - 6$ is a. $2\sqrt{29}$ a. $2\sqrt{2}$ b. 1 c. $\sqrt{\frac{37}{29}}$ d. $\frac{\sqrt{29}}{2}$

- Two numbers are selected randomly from the integers $\{1, 2, ..., 9\}$. If the sum of the 25. chosen two integers is even, then the probability that both the numbers are odd will be
 - 2 9 5 a. b. b. $\frac{-8}{8}$ c. $\frac{-3}{8}$ d. $\frac{-1}{9}$